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reflection coefficient can be computed {rom

Zu — 1
- - (36)
Zu+1
or, combining with (5),
_ (B —=1) +72Q08(« — 1) .
(B + 1) + j2058(cc + 1
Thus, when 2Q¢6= + =,
DF = | I.|
OF - L7 (38)
1+«
The distance
DG =DF+T
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e 1 — -1 12006(c — 1
PE — @ G ) +]’ Qod(a ) (39)
L+a (B+1) 4+ 72000(c + 1)
26 —
- G L 0)

(a4 1B+ 1) + 5 + 1)%208

The phase angle ®, shown in Fig. 7, is equal to argument
DG and is found from the ratio of imaginary to real
parts of (40):

2Q05(0€ + 1)

B+1

The distance FH, being proportional to tan ®, is pro-
portional to 8, z.e., the frequency. Thus, the points
projected from the locus onto the straight line 4-B
produce intercepts whose lengths are proportional to
{requency (Q.E.D.).

$ = tan~! (41)

The Excitation of a Dielecttic Rod by a
Cylindrical Waveguide*

C. M. ANGULOt axp W. S. C. CHANGT

Summary—This paper is a theoretical analysis of the excitation
of the lowest circular symmetric TM surface wave along an infinite
circular dielectric rod by a metallic cylindrical waveguide coaxial
with the rod. The asymptotic expressions for all the fields are ob-
tained by means of the Wiener-Hopf method. The expressions for
the total average power transmitted to the surface wave, the total
average power reflected, and the total power radiated, per unit in-
cident power, are derived and computed for e=2.49 for various radii
of the dielectric rod.

INTRODUCTION

T is well known that a TM circular symmetric
J:[ surface wave can be easily launched along a cir-
cular dielectric rod by a metallic cylindrical wave-
guide. A condensed theoretical analysis of an idealized
version of this problem is given here. For the detailed
analysis, the reader is referred to a previous report by
the authors!
The structure under considerationis represented in
Fig. 1. It consists of an infinite circular dielectric rod
of relative permittivity e and radius ¢ fitted tight into a

* Manuscript received by the PGMTT, February 14, 1958; re-
vised manuscript received, June 2, 1958. The research described in
this paper has been sponsored by the Cambridge AF Res. Ctr. under
Contract AF 19(604)-1391 with Brown University.
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I Electronics Res. Lab., Stanford University, Stanford, Calif.
Formerly at Brown UmverSLty, Providence, R. 1.

1 C., M. Angulo and W. S. Ch hang, “Excitation of a Dielectric
Rod by a Cylindrical Waveguide,” Div. of Eng., Brown University,
Providence, R. 1., Scientific Rep. AF 1391/7; july 1957.

semi-infinite cylindrical waveguide ot infinitely thin
metallic wall which extends from g= — « to z2=0.

The incident energy is carried by the TM, 1 mode of
the cvlindrical metallic waveguide. It excites a TM
surface wave along the rod, a reflected wave in the
waveguide, and a scattered radiation at the end of the
metallic waveguide. It is assumed here that along the di-
electric rod only the lowest circular symmetric surface
wave can exist and that the TM,; mode is the only
mode propagating inside the waveguide. This is true if
2.405(e—1)"12 < Ka<5.52¢7 12, where K =27/\.

Since the structure considered (see Fig. 1) is inde-
pendent of ¢ and the incident wave is the TMy,; mode,
only the circular symmetric TM proper and improper
modes are excited. Therefore, /8¢ =0 and H,=Fy=H,
=0. Furthermore, all the higher TM modes «xcited
inside the cvlindrical guide attenuate exponentially in
the negative z direction. It follows immediately that
the far zone fields of our problem must be of the forms:

. = AJo(Kep) exp [— 7(K2 — K 2)12%]
+ BJo(K.p) exp [j(K2 — K %)) (1)

| Awee
_ 7 0 (K2 — Kcﬁ)x/fzz]

Ji(K.p) exp [—

c

Bwe €0
T K exp [j(K2e — K24 ] (2)

c
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Fig. 1—The dielectric rod excited by a cylindrical waveguide.

for Kz<<—1, inside the metallic waveguide

— g(0) sin e iKE

Ez =
R
i, [Koucpq) U(p— a4 0@l Kop) U@mﬂ
Jo(KaP)
“U(%) exp [—jK(1+4g2)/2] 3
€01/2g(0)6~]'KR
- o
Mo”zR
_al?C Ki(Kag)J(Kpp)
—j ——| Ki(Kpq)U(p—a) + —— 2
/ uomq[ (Kol lp=a) + J1i(Kap)

Vo= | U6 ew [iKU+e ] @
for KR>>1, outside the metallic waveguide, where U
stands for the Heaviside unit step function [U(x)=0
for x<0; U(x) =1 for x>0]. 4 is the amplitude of the
incident TM,, mode inside the metallic cylindrical
waveguide. B is the amplitude of the reflected TM,,
mode inside the metallic waveguide. C is the amplitude
of the transmitted surface wave along the dielectric
rod. g(f) is the angular distribution function of the
radiation field. X, is the cutoff wave number of the
TMy,; mode inside the metallic guide (K,.a = first zero of
Jo).

p and ¢ are the propagation wave numbers of the
lowest TM circular symmetric surface wave.?

Ptg=e—1 (5)
/i Kpa) K(Kqa) + pIo(Kpa)Kr(Kga) = 0. (6)

% S. A. Schelkunoff, “Electro-magnetic Waves,” D. Van Nostrand
Co., Inc., New York, N, Y., pp. 425-428; 1943,

IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

October

THE REPRESENTATION OF THE FIELDS

Mathematically, we separate the total fields into two
parts,

E. = Ey + &, Hy = Hyy -+ 3C, (7
where

[WEQE
Ho = A5 1K) Ula — p) exp [— j(K2e — K)s] (8)
Eo. = AJo(Kp)U(a — p) exp [— j(K% — KHz].  (9)

Hy and E,, obviously have the meaning of theinci-
dent wave. Whereas, 3, and &, are the incomplete
scattered fields. We represent these two incomplete
scattered fields 3¢ and &, by their Fourier transforms,

1 erie) 7

o = (27r>1/2f_w[ , ]e o 1o
1 e

b= (27r)1/2f [V (5, p)Je=iwdy. (11)

TrE EQuaTiON OF THE FOURIER TRANSFORMS
AT p=q
Since Eg, and Hyy satisfy the steady-state Maxwell's
equations with time dependence et#! for p<a, &, and
3¢y must satisfy them also in the same regions. This
means that V(n, p) and I(n, p) for pSa arel

Jo(Aap)
V="V, a) Ula— — p)
]o(Ada)
Hy®(Aop)
Vin, —— U(p — , 12
+ Vin, ay) 2y (hoa) (p — a4) (12)
J1(Aap)
I = —43V4V(y,a- Ula. — p
JYaV(n, a-) Tolha) ( )
H1® (Aap)
— 1Y V(0 ap) —————U(p — , 13
V8 e U= ), (1)
A = (K — )12, ’ (14a)
Ag = (K% — g2)1/2 (14b)
1 K2 — p2)1/2
zo= LK (152)
)’ wegp
1 K2 — p2)1/2
Ty = — = gi_)& (15b)
Y, WepeEp

where the subscript plus means lim ,., from p>a and
the subscript minus means lim ,., from p<a.

Atp=a, V(n, p) and I(n, p) must satisfy the boundary
conditions determined by E, and Hj, z.e.,

1) &=0 for 2<0.
2) &.(2, ay)=8.(3, a_) =8.(3, a) for all z.
3) 3u(z, ay) —3Cu(z, a) = Hoy(z, a_) for 2>0.
Let
+e .
540 9 = o [ TG ) = a0 o, (10
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1 0
97 (g, @) = Wf_w[gc¢(2’ ay) — H4(z, a_)|erdz, (17)

Angulo and Chang: The Excitation of a Dieleciric Rod by a Cylindrical Waveguide

391

Iu(n)>—W, where Wi>0, Wai<|dn(K)|, W,
<|9.[(K2—K2)v2]|, and We<|8.[K(1+¢2)¥2]| 2 On
the other hand, F(3) is analytic and free of zeros inside
a narrow strip 2, about the real axis of the n plane.

—1 oo
VHn, @) = &.(5, a)ermds, 18 . :
) (qu)l/?fo (5, a)ermdz (18) Therefore, we can rearrange (20) into a new equation
. , where the left-hand side is analytic for 9,(n) <W, and
_ - the right-hand side is analytic for 9.(7)>— W4 as
V=(n,a) = &.(z, a)eids.
e (2@1/2[ &l a)emd 9 folows:t
9 (n, a)(K + ) 2 + (K% — K.2)'2] weeva AJ1(K ca)

[1 4+ K1+ ¢»2] exp [£(n)]

@K — (Krem K2

. {[n + (K% — KA )K + )1
(m + K(1+ ¢-)'"] exp [£(n) ]
weole + Daln — K(1 + ¢2)12]V+(n, a)

ln — (K% —

K&K — ¥ exp [£5(n]

Z(KZ(: _ KCZ) 1/2[K + (K‘“’e _ KCZ)llz]ll‘.’ }

[(KQE — KW 4+ K(1 + q2)1/2] exp [E‘{(K‘“’e _ KCZ)W}]

2weegat 1(Koa) (K% — KV [K + (K% — K212

+ 22
(2mWR,[p — (K¢ — K)P][(K2% — KAV 4 K(1 + ¢9)2] exp [£{ K% — K22} ] =
Then the boundary conditions 1), 2), and 3) give! where
weole + Daly® — K2(1 + ¢9)] w
9= (n, 1) = FpV¥(n, a) _ —1 prenidn F(§)
Aufn? — (K% — K2 E) =— - dE, (23)
[7? — (K% — K.9)] ( 2757 it E—n
wéof(lAjl(Kc(L)
+ - (20) . )
(2m) PR [n — (K% — K2 —1 pte=iWaln F(¢)
E(n) = — - dt. (24)
where 2mjJ —oywt =1
A 2 (K2 — 2
Fpy = 7aln (K% — K2 £ (n) is analytic for 9,(n) <Wa. £t(n) is analytic for
1 In(n) > — Wa.
P 2 2 2 m
(1 * ) [+ K21+ )] Both sides of (22) are analytic for | 9,(n)| < Wa. Thus,
they are the analytic continuation of each other. We can
Ad H1(2)(Aaa) . . .
J1(Aga) — — —— Jo(Aqa) show from their asymptotic behaviors that they must
Ao He*(Aqa) (21) both be identically equal to the constant zero.!
Ad]o(Ada) Hence,
iy @) = 2eAT\(K,a)(K% — K2V [K 4 (K2 — KAV (K — )2 exp [£H(n) — £ { (K% — K.2)'?}] (25)
neT (@m) PK[(K%e — K27 + KL+ ¢)7)(e + Do — K1+ ¢)'7] ’
o(n, Awegeal 1(K ,a) [7] + K(1 4+ q2)1/2] exp [E_(n)]
b a =
YT K — (e — KE)]@m) e — KA+ ¢
[(K + M2y + (K2 — K212 2K% — K2)'PK — (K% — K212 :I (26)
[14 K(1+ ¢ lexp [()]  [(K? — KEHYV2 + K(1 + ¢ exp [£{ (K2 — KAV} [

THE SoLUTIONS OF THE FAR ZONE F1ELDS

In slightly dissipative media, K, (K2—K )2, and
K(14¢?)Y2 must have a small negative imaginary part
to comply with the law of conservation of energy.
It follows that 9—(y, @) must be analytic for 4,(n) < W,
and that 9%(y, @) and V*(y, @) must be analytic for

In this section, we have regarded (22) valid for all
9. Thus the solutions expressed in (25) and (26) are
equal to the solutions of 9=(%, @) and V*(n, @) associated
with the physical fields only for |9.(n)| < W4 Never-

3 P, M. Morse and H. Feshbach, “Methods of Theoretical Phys-

ics,” McGraw-Hill Book Co., Inc., New York, N. Y., pp. 483-471;
1953.
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theless, these 9=(n, @) and V*(y, a) will yield the cor-
rect far zone fields through the inverse Fourier trans-
form, since the inverse transform is performed on the
real n axis.

Carrying out the inverse transforms of §, and 3¢;(z,a..)
—3C4(2, a_) by means of the method of steepest descent
and then comparing them with (1) to (4), we obtain:!

CKo(Kga)y=(2m)"?  lim  [{n—K(1+¢)"2}V+(n, a)]

n—K (1+g)i2

7 0
U[z—?—arctan {(1+92)1/2_q}]} (27
2\ V+H(K cos 8, a)
2(6) =74 (—) csc ————» (28)
T Hy®(Ka sin 6)
and
Q.
BJ:(K.¢) = ———— lim
WENER 5o — (K2, —K )12
Aln + (&% = KE)")s~(n, )} (29)

The answers here to the reflected coefficient B and
transmitted coefficient C are exact. The answer of g(8) is
only evaluated to the first term of the asymptotic series,
but accuracy of g(6) obviously can be readily improved
by evaluating more terms of the asymptotic series.

TrE EXCITATION EFFICIENCY AND THE CALCULA-
TION OF POWER REFLECTED, TRANSMITTED,
AND RADIATED

Due to the orthogonality of the proper and improper
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Fig. 2—Plot of the powers radiated, transmitted, and reflected,

for 0< 8 <7 per unit angle. Where

modes, the average power radiated, reflected, and trans- E(a) = — 2002
mitted, can be derived by Poynting’s theorem from g (8), TK2a?
B, and C, alone. After some tedious manipulations, we Kerarctan [We] 7 di
obtained the following expression for the reflected . f ) , (33)
power R, transmitted power T (excitation efficiency), 0 e wll1— x® \/?
and radiation loss L, per unit incident power.! K22 K242
' K2\1/2 K,2\1/2
401 /e, . 2 — +1:l 1 N1z _
(4 <e K2) [<e K) (g = 2 e
|- K2\ 2 K2 \!2 €xp |:E(1 +¢) — E{e— F>]7 (30)
— e 2Y1/2 — _
9L<e K2> ) }<€ ! K2>
K2\ 1272 K 2\1/2
2y1/e . —_— —_
[(1+g)l (C K2> }Ke K2> +1] I K.
K2\ 72 K.2\1/2 xp 1_“E( - K2 >}’ (31)
21/ R S R
oo (=5) J(-5) -]
K,2\1/2 K2\ K2
4<e - ) |:<<—: - > + 1:|<p2 ~ X >(1 — cos 6)(¢g* + sin? @)
ch 1/2 2 Kc2 1/2 Kc2
er [(e T ) + (1 4+ q2)1’2:l <e -1 - e > [(1 4 ¢»)rr2 — cosH]2<e T cos? 0)
K2
(€ — cos20)12 Ty Ka(e — cos?8)12] exp [E(COSZ 8 — E(e T >}
— (32)

{4(e — cos? )J*[Ka(e — cos? 0)1/2] + x2K%a* sin? 6M2(6)} 1/2
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rex?/ 1 { [K2a2(e — 1) + 2212} [T () + No(#)]

Wy = —
O TR — 1) + )| [K2a2(e — 1) + 22]17)
= S 07 = NN (34
M) = J1[Ka(e — cos?9)*]e sin [ T*(8) + No*(8)]
— (e — cos? )12 [Ka(e — cos? 6)1/2]
[T1(8)To(8) + N1(B)No(8)], (35)
B8 = Ka sin 8. (36)
Total power radiated = fWL(B)d(?. (37

Eqgs. (30) and (31) are computed numerically on the
computer for e=2.49 for various values of Ka. These
rnumerical results are plotted in Fig. 2. From these
results it is clear that
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1) The excitation efficiency for Kea>3 is quite high
(above 70 per cent). Hence it is an efficient way
of excitation. The excitation efficiency does not
depend critically upon the precise values of Ka.

2) The larger the normalized cross section of the
dielectric rod (Ka) is, the higher is the excitation
efficiency.

3) The excitation efficiency curve resembles very
closely the efficiency curves obtained in exciting
a corrugated surface? or a dielectric slab.?

4) The excitation efficiency can be improved by
flaring out the edge of the metallic waveguide at
z=0to accommodate a larger dielectric rod without
causing a second mode to propagate insicde the
metallic waveguide.

4+ A, L. Cullen, “The excitation of plane surface waves,” Proc.

IEE, Monograph No. 93, vol. 101, pt. 4; 1954,

8 C. M. Angulo and W. S. C. Chang, “On the Excitation of Sur-

face Waves, Part [, 11, and IIL,” Div. of Eng., Brown University,

Providence, R. 1., Scientific Reps. No. AF 1391/3 to AF 1391/5,
pp. 67-72; 1956.

An Investigation of the Propetties of Germanium
Mixer Crystals at Low Temperatures™
L. K. ANDERSONYt axo A. HENDRY]

Summary—Experimental determinations of the noise tempera-
ture ratio, IF resistance, and conversion loss of 1N263 germanium
mixer diodes operated in an X-band receiver are presented as a
function of mixer temperature for the range —196°C to 27°C. No
improvement in receiver noise factor was obtained by cooling the
mixer to —196°C; however an improvement of 0.3 to 0.6 db was ob-
served by cooling to a temperature in the region —100°C to —50°C.
The exact value of the improvement and the optimum temperature
depends on the individual crystal, as well as on dc bias and local os-
cillator drive.

I. INnTRODUCTION

T has been suggested,* largely on theoretical grounds,
;]—[ that the over-all noise {actor of a superheterodyne

receiver, employing a germanium crystal mixer, may
be improved by cooling the crystal to a temperature
substantially below the ambient temperature. The work
discussed in this paper was carried out in an effort to
verifv this prediction, and also to determine how the
various crystal parameters, such as IF resistance and

* Manuscript received by the PGMTT, February 25, 1958; re-
vised manuscript received, June 25, 1958.

t Microwave Lab., Stanford University, Stanford, Calif.; for-
merly at Natl. Res. Council, Ottawa 2, Ont., Can.

I INatl. Res. Council, Ottawa 2, Ont., Can.

1 (. C. Messenger, “Cooling of microwave crystal mixers and
antennas,” IRE TrANS. oN MICROWAVE THEORY AND TECHNIQUES,
vol. MTT-5, pp. 62-63; January, 1957.

noise temperature ratio, vary with temperature in the
range from room temperature to the boiling point of
nitrogen (about —196°C). The work was carried out
at 9375 mc, using type 1N263 germanium diodes.

II. MEASUREMENT OF CRYSTAL AND SYSTEM
PARAMETERS

Fig. 1 is a block diagram of the apparatus, with which
the following parameters may be determined: over-all
receiver noise factor, IF amplifier noise factor, and the
noise temperature ratio, IF resistance, and conversion
loss of the crystal mixer. The over-all receiver noise
factor and the IF amplifier noise factor are determined
by standard methods, e.g., fluorescent lamp waveguide
noise source followed by a precision waveguide at-
tenuator for the over-all noise factor, and a temperature
limited noise diode with 3-db attenuator in the IF
amplifier for the IF noise factor.

The methods used for the measurement of the crystal
parameters are largely those described by Torrey and
Whitmer.?

2 H. C. Torrey and C. A. Whitmer, “Crystal Rectifiers,” M.L.T.
Rad. Lab. Ser., McGraw-Hill Book, Co., Inc., New York, N. Y., vol.
15, pp. 223-226; 1948.



