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reflection coefficient can be computed from

or, colnbining with (5),

r = (P – 1) +jwotxa – 1)

(s + 1) +Nad(a + 1)

Thus, when 2QOa = ~ n ,

——
DF= lr=~

l–a——
DF = ——- ~

I+@

Ile distance

(36)

1 – a (p – 1) +j2Q06(a – 1)
DG z ~+—a + –—-——-—--—

(P+ 1) +.i2Q”a(a + 1)
(39)

2(3 – a)
— ———— (.40)

(~ + 1)(8 + 1) +;(cl + 1) ’2 Qcl13“

The phase angle @, shown in Fig. 7, is equal to argllment

(37) DG and is found from the ratio of imaginary to real

parts of (40):

2Q,8(a + 1)
@ = tan–l ——–—

@+l
(41)

(38)
The distance FH, being proportional to tan @, k pro-

portional to 6, i.e., the frequency. T bus, the points

projected from the locus onto the straight line A-B

produce intercepts whose lengths are proportioj~al to

frequency (Q. E.D.).

The Excitation of a Dielectric Rod by a
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Summary-Thk paper k a theoretical analysis of the excitation
of the lowest circular symmetric TM surface wave along an infhite

circular dielectric rod by a metallic cylindrical waveguide coaxial

with the rod. The asymptotic expressions for all the fields are ob-

tained by means of the Wiener-Hopf method. The expressions for
the total average power transmitted to the surface wave, the total
average power reflected, and the total power radiated, per unit in-

cident power, are derived and computed for c=2.49 for various radii

of the dielectric rod.

lNTRODTJCTION

I

T is well known that a TM circular symmetric

surface wave can be easily launched along a cir-

cular dielectric rod by a metallic cylindrical wave-

guide. A condensed theoretical analysis of an idealized

version of this problem is given here. For the detailed

analysis, the reader is referred to a previous report by

the authors.’

The structure under consideration is represented in

Fig. 1. It consists of an infinite circular dielectric rod

of relative permittivity e and radius a fitted tight into a
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semi-infinite cylindrical waveguide of infinitel~ thin

metallic wall which extends from z = — co to z =0.

The incident energy is carried by the TM OJ III ode of

the cylindrical metallic waveguide. It excites a TNI

surface wave along the rod, a reflected wave ‘in the

waveguide, and a scattered radiation at the end of the

metallic waveguide. It is assumed here that along the di-

electric rod only the lowest circular symmetric surface

wave can exist and that the TM O.l mode is the only

mode propagating inside the waveguide. This is true if

2.405(E – 1)–112 <Ka < 5.52e–112, where K= 27r/ho.

Since the structure considered (see Fig. 1) i:} inde-

pendent of @ and the incident wave is the TM 0,1 mode,

only the circular symmetric TM proper and im proper

modes are excited. Therefore, d/dq5 = O and Hp ==& = Ha

= O. Furthermore, all the higher TM modes excited

inside the cylindrical guide attenuate exponentially in

the negative z direction. It follows immediately that

the far zone fields of our problem must be of the forms:

E, = A .TO(K.P) exp [– j(K% – .KG2)1/22]

+I=UO(KCP) exp [j(K’e – Kc’)’ /’%] (1)

H4 =
jAOJeeo
— J~(K,p) exp [– j(K21~ – K/)1/”z]

K.

+ j ~~s JI(KCP) exp [.j(K’c – Kc’) ‘%] (2)
c
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Fig. l—The dielectric rod excited by a cylindrical waveguide

for Kz<< – 1, inside the metallic waveguide

– g(0) sin Oe–iKR
En=—

R

[
+C Ko(Kpg) U(p – a) +

K,(Kaq)J@pp)

JO(KaP)

. U(Z) exp [–jK(l+@)’l’z]
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114= ———
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1

(3)

~ollzc

[

Kl(Kaq).ll(KpP)
–.i ~~ Kl(KPq) U(P – a) +

Jl(KaP)

1
U(a–p) U(Z) exp [–~K(l+g2)’i2z] (4)

for KR>>l, outside the metallic waveguide, where U

stands for the Heaviside unit step function [ U(x) = O

for x <O; U(x) = 1 for x > O]. A is the amplitude of the

incident TM ~,1 mode inside the metallic cylindrical

waveguide. B is the amplitude of the reflected TM 0,1

mode inside the metallic waveguide. C is the amplitude

of the transmitted surface wave along the dielectric

rod. g(0) is the angular distribution function of the

radiation field. K. is the cutoff wave number of the

TM ~,1 mode inside the metallic guide (K,a = first zero of

J,) .

$ and g are the propagation wave numbers of the

lowest TM circular symmetric surface wave. 2

p’+q’=e–l (5)

qJl(K~a) KO(Kqa) + PJO(Kja) K1(Kqa) = O. (6)

z S. A. Schelkunoff, “Electro-magnetic Waves, ” D. Van Nostrand
Co., Inc., New York, N, Y., pp. 425-428; 1943.

THE REPRESENTATION OF THE FIELDS

Mathematically, we separate the total fields into two

parts,

Ez = Eoz + ~,, H+ = Ho+ + Y& (7)

where

IIo@ = A ‘~Jl(K.p) U(a – p) exp [– j(K2e – K.2)z] (8)
c

Eo, = AJo(K,p) U(a – p) exp [– j(K2e – KC2)Z]. (9)

.HO~ and EO, obviously have the meaning of the inci-

dent wave. Whereas, X+ and ~. are the incomplete

scattered fields. We represent these two incomplete

scattered fields X+ and 8, by their Fourier transforms,

–1 +“
&=- S [V(q, p)]e-~’f”dq.

(27)’/’
(11)

—cc

THE EQUATION OF THE FOURIER TRANSFORMS

ATp=a

Since 120z and IIod satisfy the steady-state Maxwell’s

equations with time dependence e+iti$ for p ~ a, &Z and

X+ must satisfy them also in the same regions. This

means that V(q, p) and l(q, p) for p $ a are]

lia = (K’ — qz) l/2,

& = (~’e — q2)1/2

(K’ – q’)li’
z.=+= —>

~d = : = (K2eu~q2)’/2

vd u6iJ6p

where the subscript plus means

the subscript minus means Iim ~+,

(12)

(13)

(14a)

(14b)

(15a)

(15b)

lim ,.. from p >a and

a from p<a.

At p = a, V(q, p) and 1(T, p) must satisfy the boundary

conditions determined by E. and H+, i.e.,

1) 8.=0 for z <O.

2) 8,(2, a+)= 8,(2, a-)= S%(z’, a) for all z.

3) 3C~(z, a+) – Y.3~(z, a-)= H~~(z, a_) for z>O.

Let

1

s
9+(77,a) = ~ ~‘m[X+(z)a+)– X4(Z, a_)]e~~2dz, (16)
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1
9–(q, (1) = —

(~r)liz s
0[x$(,, a+) - x,(,, a_)]e%iz, (17) ‘m(~)> - ‘d’ ‘here “>0’ ‘d<< I ‘m(K) l.’ “

—. < 19~[(K2t–.K.’)lJ2]l , and W~< Ig~[K(l+q2)l/z [[ .30n

the other hand, F(q) is analytic and free of zeros inside

s

+.
J+(q, a) = * ‘ 8&(z, a) e~~’dz, (18)

a narrow strip 2 W~ about the real axis of the q plane.

Therefore, we can rearrange (20) into a new equation

–1 o
where the left-hand side is analytic for 9~(q) < Wd and

~~-(~) a) = - s
2,(z,a)ej~’ab. (19)

the right-hand side is analytic for .$~(~) > – lW~ as

—m follows:l

~–(q, a)(K + q)l/2[v + (K’e – fYc2)1/2j cwqu AJ~(K,a)

[?+ K(l + g’)’”] exp [t-(q)] - (27T)’/’Kc [q – (K-e – K2)’/’

GJ60(.5 + l)a[q — K(l + qz)l/2]V+(q, a)
—

[q – (K’, - K$j]/2](K - vj’” exp [~+(~) 1

Then the boundary conditions 1), 2), and 3) givel

WI(6 + I)(J[q’ – W(1 + (J’)]
9’–(T, (z) =

A= [q’ – (k% – K,’)]
F(T~lT+(q, a)

ueO’aA.ll(Kca)

+ (27r)l@Kc[q – (K’, – K,’)’/’l
(20)

where

F,., =
j.ia [?/-’ – (K% – Kc’)]

,,,,

()1 + ~ [~’+ K’(1 + q’)]
e

Ad ~~(2)(&a)
~~(Ada) – -— —— Jo(Ada)

d. Ho2(A. a)
. (21)

.fdJO(Ada)

where

+m+,lrd in ~(~)
g-(q) = 2

J
—- d(, (23)

w’ -.+iw’ t – ‘v

+m–iWd ]n ~((j
t+(v) = GJ —- d<.

-.-,W’ r – 7
(24)

$–(q) is analytic for 9~(v) < W~. &+(v) is analytic for

9m(q) > – Wd.

Both sides of (22) are analytic for 19~(q) I <W& Thus,

they are the analytic continuation of each other. \~?e can

show from their asymptotic behaviors that they must

both be identically equal to the constant zero.’

Hence,

I’+(7j, a) = –
2cAJI(K,u)(K’c – KC’) ’/2[K + (K% – KCZ)l/’]’/’(K – q)’1’ exp [.$+(n) – g-{ (K’, – K,’)’/’}]

(2 T)’’’KC[(K% – K.’)’/’+ K(I + q’)’’’](, + I)[q – R(1 + q’)’”]

—
! (25)

AcoeoeaJl(KCa) [q + K(I + q’) 1/’] exp [~--(q)]
9–(q, a) =

lrc[q~ – (k”’, – A’c’)](27r)’/’17.7 – K(l + q’)1/~]

“[(~+ d’/’[n + (we – It.’)’/’] 2(K% – &’)1/2[K – (K”’e – KG~)l/2]’/2

[n+ K(1 + q’)”] exp [t-(77)] – 1[(K2E – Kc2)1/2 + K(l + *’)112] exp [f-{ (K’c – K.’)-’l’] ] “
(26)

THE SOLUTIONS OFTHE FAR ZONE FIEI.DS In this section, we have regarded (22) valid for all

In slightly dissipative media, A“, (K% – K.’) lj’, and
V, Thus the solutions expressed in (25) and (26) are

H( 1 + gz) 1/2 must have a small negative imaginary part
equal to the solutions of 9–(q, a) and V+(V, a) associated

to comply with the law of conservation of energy.
with the physical fields only for 19~(q) I < W~. Never-

It follows that 9-(v, a) must be analytic for 9*(q) < Wd 8 P. M. Morse and H. Feshbach, “Methods of Theoretical Phys-
ics, ” McGraw-Hill Book Co., Inc., hTew York, N. Y., pp. 453–471;

and that g+(q, a) and V+(q, a) must be analytic for 1953.
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theless, these 9–(q, a) and V+(V, u) will yield the cor-

rect far zone fields through the inverse Fourier trans-

form, since the inverse transform is performed on the

real q axis.

Carrying out the inverse transforms of 8, and 3C@(z,a+)

– X4(Z, a–) by means of the method of steepest descent

and then comparing them with (1) to (4), we obtain:’

cKo(Kga) = (27rj) 1/2
,+:::,,,,2 [~~-~(1+~’)’”) v+(q, a)]

[ 1
U ~–~–arctan {(l+g2)’/’–g] , (27)

! ‘2 112

()

V+(K Cos e, a)
g(e) =j — Csc o —

7r ~0(2)(~~ sin fj) ‘
(28)

and

The answers here to the reflected coefficient .B and

transmitted coefficient Care exact, The answer of g(f)) is

only evaluated to the first term of the asymptotic series,

but accuracy of g(0) obviously can be readily improved

by evaluating more terms of the asymptotic series.

THE EXCITATION EFFICIENCY AND THE CALCULA-

TIohTOF POWER REFLECTED, TRANSMITTED,

AND RADIATED

Due to the orthogonality of the proper and improper

modes, the average power radiated, reflected, and trans-

mitted, can be derived by Poynting’s theorem from g (0),

B, and C, alone. After some tedious manipulations, we

obtained the following expression for the reflected

power R, transmitted power T (excitation efficiency),

and radiation loss L, per unit incident power. 1

K.

Fig. 2—Plot of the powers radiated, transmitted, and reflected,

for 0<0< r per unit angle. Where

– Zall’

l?(a) = —

rK2a2

( ::Y’’[(’-%2+111( 1+12 )”2”2- “ exp[E(1+,2,_E(, K,)]
4(1 + !f)l/’ e – –~

T=

[(
KC2 1/2

)

2

1(

Kc’ 1/2

+ (1 + #)’/’

)

K’ ‘
~——

‘L K’
~.l—.—

[ “+’’)’’’-(’-%)’2]2[ (’-$ )1’2+; exp{_2E(e K,2j~
R=

[ ( 3212[(’-32”- ‘1
(l+qz)’1’+ , – U

K’ ‘

4(’-32[(’- %’)’’+ ’l(*’-%)(’ - ‘0s’)(’2+ ‘in’”
L=—

‘T[(’-32+(’+’2)’’212(’- 1 -%31’2 (
[(1 + g’)” - .0s0]’ t -:- Cos’e)

[ ( K’ I
(C – COS2i9)’/2Jo[Ka(e – COS20)’/2] exp E(cos2 8) – E e – ~

{ 4(c – COS’0)J02[KLZ(C – cm’0)’/2] + r2K2a2 sin’ 0M2(61) } 1/2 –)

(.33)

(30)

(31)

(32)
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n’” (z) == –

7ret2JI{[K2a2(e – 1)+ .v2]1/2][.102(x) + N02(*)]

2[K2a2(e – 1) + x’]’l’y,{ [K2a2(e – 1) + Z’]’l’}

M(O) := J1[Ka(6 – COS29)1/2]6 sin f3[J0’(f?) + No’(6)]

– (e – cos’0)1/2Jo[Ka(6 – cosz 6)1/2]

~[J,(/3)Jo(@ + N,((3)’?VO(B)], (35)

D Z= Ara sin 0. (36)

J

w

Total power radiated = L(6)d0. (37)
o

Eqs. (30) and (31) are computed numerically on the

computer for e = 2.49 for various values of Ku. These

numerical results are plotted in Fig. 2. From these

results it is clear that

Mixer

1)

2)

3)

4)
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The excitation efficiency for Ka >+3 is quite high

(above 70 per cent). Hence it is an eficien t way

of excitation, The excitation efficiency does not

depend critically upon the precise values of Ka.

The larger the normalized cross section of the

dielectric rod (Ka) is, the higher is the excitation

efficiency.

The excitation efficiency curve resembles very

closely the efficiency curves obtained in exciting

a corrugated surface4 or a dielectric slab.b

The excitation efficiency can be improved by

flaring out the edge of the metallic waveguide at

z = O to accommodate a larger dielectric rod w ithout

causing a second mode to propagate insi{~e the

metallic waveguide.

AA. L. Crdlen, “The excitation of plane surface waves, ” Proc.
IEE, Monograph No. 93, vol. 101, pt. 4; 1954.

5 C. M. Angrdo and W. S. C. Chang, “On the Excitation of Sur-
face \Vaves, Part I, II, and II I,” Div. of Eng., Brown University,
Providence, R. I., Scientific Reps. No. AF 1391/3 to Al? 1391/5,
pp. 67-72; 1956.

An Investigation of the Properties of Germanium

Mixer Crvstals at Low Tem~eratures*
J

L. K. ANDERSON~

Summarg-Experimental determinations of the noise tempera-
ture ratio, IF resistance, and conversion loss of IN263 germanium
mixer diodes operated in an X-band receiver are presented as a

function of mixer temperature for the range – 196°C to 27°C!. No

improvement in receiver noise factor was obtained by cooling the

mixer to —196°C; however an improvement of 0.3 to 0.6 db was ob-

served by cooling to a temperature in the region —100”C to —50”C.

The exact value of the improvement and the optimum temperature

depends on the individual crystal, as well as on dc bias and local os-
cillator titve.

1. INTRODUCTION

I

T has been suggested, 1 largely on theoretical grounds,

t’nat the over-all noise factor of a superheterodyne

receiver, employing a germanium crystal mixer, may

be improved by cooling the crystal to a temperature

substantially below the ambient temperature. The work

discussed in this paper w-as carried out in an effort to

verify this prediction, and also to determine how the

various crystal parameters, such as IF resistance and

* ], Manuscript received by the PGMTT, February 25, 1958; re-
vised manuscript received, June 25, 1958.

T Microwave Lab., Stanford Uni\.ersity, Stanford, Calif.; for-
merly at iVatl. Res. Council, Ottawa 2, Ont., Can.

1 Natl. Res. Council, Ottawa 2, On!., Can.
‘ Cr. C. Messenger, ‘[Cooling of microwave crystal mixers and

antennas, ” IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES,
VOI. N[TT-5, pp. 62–63; Jannary, 1957.
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noise temperature ratio, vary with temperature in the

range from room temperature to the boiling point of

nitrogen (about — 196” C). The work was carried out

at 9375 mc, using type 1N263 germanillm diodes,

II. h~EASUREMENT OF CRYSTAL AND SYSTEM
PARAMETERS

Fig. 1 is a block diagram of the apparatus, with which

the following parameters may be determined: over-all

receiver noise factor, IF amplifier noise factor, and the

noise temperature ratio, I F resistance, and conversion

loss of the crystal mixer. The over-all receivel noise

factor and the IF amplifier noise factor are determined

by staudard methods, e.g., fluorescent lamp waveguide

noise source followed by a precision waveguide at-

tenuator for the over-ail noise factor, and a temperature

limited noise diode with 3-db attenuator in the IF

amplifier for the I F noise factor.

The methods used for the measurement of the cr~-stal

parameters are largely those described by Torrey and

Whitmer.2

2 H. C. Torrey and C. A. Whitmer, “@’Sal Rectifiersl” hI. I.T.
Rad. Lab. Ser., hfcGraw-Hill Book, Co., Inc., New York, N. }“., vol.
15, pp. 223–226; 1948.


